Multiyear hourly statistics
yhourstat.Rd
This module computes statistical values of each hour and day of year. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of each hour and day of year in infile is written to outfile. The date information in an output field is the date of the last contributing input field.
Usage
cdo_yhouravg(ifile, ofile = NULL)
cdo_yhourmax(ifile, ofile = NULL)
cdo_yhourmean(ifile, ofile = NULL)
cdo_yhourmin(ifile, ofile = NULL)
cdo_yhourrange(ifile, ofile = NULL)
cdo_yhourstd(ifile, ofile = NULL)
cdo_yhourstd1(ifile, ofile = NULL)
cdo_yhoursum(ifile, ofile = NULL)
cdo_yhourvar(ifile, ofile = NULL)
cdo_yhourvar1(ifile, ofile = NULL)
Details
yhourmin Multi-year hourly minimum
o(0001,x) = min\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = min\{i(t,x), day(i(t)) = 8784\}
yhourmax Multi-year hourly maximum
o(0001,x) = max\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = max\{i(t,x), day(i(t)) = 8784\}
yhourrange Multi-year hourly range
o(0001,x) = range\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = range\{i(t,x), day(i(t)) = 8784\}
yhoursum Multi-year hourly sum
o(0001,x) = sum\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = sum\{i(t,x), day(i(t)) = 8784\}
yhourmean Multi-year hourly mean
o(0001,x) = mean\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = mean\{i(t,x), day(i(t)) = 8784\}
yhouravg Multi-year hourly average
o(0001,x) = avg\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = avg\{i(t,x), day(i(t)) = 8784\}
yhourstd Multi-year hourly standard deviation
Normalize by n.
o(0001,x) = std\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = std\{i(t,x), day(i(t)) = 8784\}
yhourstd1 Multi-year hourly standard deviation (n-1)
Normalize by (n-1).
o(0001,x) = std1\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = std1\{i(t,x), day(i(t)) = 8784\}
yhourvar Multi-year hourly variance
Normalize by n.
o(0001,x) = var\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = var\{i(t,x), day(i(t)) = 8784\}
yhourvar1 Multi-year hourly variance (n-1)
Normalize by (n-1).
o(0001,x) = var1\{i(t,x), day(i(t)) = 0001\}
...
o(8784,x) = var1\{i(t,x), day(i(t)) = 8784\}