Skip to contents

This module computes running statistical values over a selected number of timesteps. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of a selected number of consecutive timesteps read from infile is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile. This can be change with the CDO option –timestat_date <first|middle|last>.

Usage

cdo_runavg(ifile, nts = NULL, ofile = NULL)

cdo_runmax(ifile, nts = NULL, ofile = NULL)

cdo_runmean(ifile, nts = NULL, ofile = NULL)

cdo_runmin(ifile, nts = NULL, ofile = NULL)

cdo_runrange(ifile, nts = NULL, ofile = NULL)

cdo_runstd(ifile, nts = NULL, ofile = NULL)

cdo_runstd1(ifile, nts = NULL, ofile = NULL)

cdo_runsum(ifile, nts = NULL, ofile = NULL)

cdo_runvar(ifile, nts = NULL, ofile = NULL)

cdo_runvar1(ifile, nts = NULL, ofile = NULL)

Arguments

ifile

String with the path to the input file.

nts

INTEGER - Number of timesteps

ofile

String with the path to the output file.

Details

runmin    Running minimum
          o(t+(nts-1)/2,x) = min\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runmax    Running maximum
          o(t+(nts-1)/2,x) = max\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runrange  Running range
          o(t+(nts-1)/2,x) = range\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runsum    Running sum
          o(t+(nts-1)/2,x) = sum\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runmean   Running mean
          o(t+(nts-1)/2,x) = mean\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runavg    Running average
          o(t+(nts-1)/2,x) = avg\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runstd    Running standard deviation
          Normalize by n.

          o(t+(nts-1)/2,x) = std\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runstd1   Running standard deviation (n-1)
          Normalize by (n-1).

          o(t+(nts-1)/2,x) = std1\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runvar    Running variance
          Normalize by n.

          o(t+(nts-1)/2,x) = var\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
runvar1   Running variance (n-1)
          Normalize by (n-1).

          o(t+(nts-1)/2,x) = var1\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}