Skip to contents

This module computes statistical values over timesteps of the same hour. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps of the same hour is written to outfile. The time of outfile is determined by the time in the middle of all contributing timesteps of infile. This can be change with the CDO option –timestat_date <first|middle|last>.

Usage

cdo_houravg(ifile, ofile = NULL)

cdo_hourmax(ifile, ofile = NULL)

cdo_hourmean(ifile, ofile = NULL)

cdo_hourmin(ifile, ofile = NULL)

cdo_hourrange(ifile, ofile = NULL)

cdo_hourstd(ifile, ofile = NULL)

cdo_hourstd1(ifile, ofile = NULL)

cdo_hoursum(ifile, ofile = NULL)

cdo_hourvar(ifile, ofile = NULL)

cdo_hourvar1(ifile, ofile = NULL)

Arguments

ifile

String with the path to the input file.

ofile

String with the path to the output file.

Details

hourmin    Hourly minimum
           For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = min\{i(t',x), t_1&lt;t'&lt;=t_n\}
hourmax    Hourly maximum
           For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = max\{i(t',x), t_1&lt;t'&lt;=t_n\}
hourrange  Hourly range
           For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = range\{i(t',x), t_1&lt;t'&lt;=t_n\}
hoursum    Hourly sum
           For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = sum\{i(t',x), t_1&lt;t'&lt;=t_n\}
hourmean   Hourly mean
           For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = mean\{i(t',x), t_1&lt;t'&lt;=t_n\}
houravg    Hourly average
           For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = avg\{i(t',x), t_1&lt;t'&lt;=t_n\}
hourstd    Hourly standard deviation
           Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = std\{i(t',x), t_1&lt;t'&lt;=t_n\}
hourstd1   Hourly standard deviation (n-1)
           Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = std1\{i(t',x), t_1&lt;t'&lt;=t_n\}
hourvar    Hourly variance
           Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = var\{i(t',x), t_1&lt;t'&lt;=t_n\}
hourvar1   Hourly variance (n-1)
           Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:

           o(t,x) = var1\{i(t',x), t_1&lt;t'&lt;=t_n\}