Skip to contents

This module computes statistical values over an ensemble of input files. Depending on the chosen operator, the minimum, maximum, range, sum, average, standard deviation, variance, skewness, kurtosis, median or a certain percentile over all input files is written to outfile. All input files need to have the same structure with the same variables. The date information of a timestep in outfile is the date of the first input file.

Usage

cdo_ensavg(ifiles, p = NULL, ofile = NULL)

cdo_enskurt(ifiles, p = NULL, ofile = NULL)

cdo_ensmax(ifiles, p = NULL, ofile = NULL)

cdo_ensmean(ifiles, p = NULL, ofile = NULL)

cdo_ensmedian(ifiles, p = NULL, ofile = NULL)

cdo_ensmin(ifiles, p = NULL, ofile = NULL)

cdo_enspctl(ifiles, p = NULL, ofile = NULL)

cdo_ensrange(ifiles, p = NULL, ofile = NULL)

cdo_ensskew(ifiles, p = NULL, ofile = NULL)

cdo_ensstd(ifiles, p = NULL, ofile = NULL)

cdo_ensstd1(ifiles, p = NULL, ofile = NULL)

cdo_enssum(ifiles, p = NULL, ofile = NULL)

cdo_ensvar(ifiles, p = NULL, ofile = NULL)

cdo_ensvar1(ifiles, p = NULL, ofile = NULL)

Arguments

ifiles

Character vector with the path to the input files.

p

FLOAT - Percentile number in {0, ..., 100}

ofile

String with the path to the output file.

Details

ensmin     Ensemble minimum
           o(t,x) = min\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensmax     Ensemble maximum
           o(t,x) = max\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensrange   Ensemble range
           o(t,x) = range\{i1(t,x), i2(t,x), ..., in(t,x)\}
enssum     Ensemble sum
           o(t,x) = sum\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensmean    Ensemble mean
           o(t,x) = mean\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensavg     Ensemble average
           o(t,x) = avg\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensstd     Ensemble standard deviation
           Normalize by n.

           o(t,x) = std\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensstd1    Ensemble standard deviation (n-1)
           Normalize by (n-1).

           o(t,x) = std1\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensvar     Ensemble variance
           Normalize by n.

           o(t,x) = var\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensvar1    Ensemble variance (n-1)
           Normalize by (n-1).

           o(t,x) = var1\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensskew    Ensemble skewness
           o(t,x) = skew\{i1(t,x), i2(t,x), ..., in(t,x)\}
enskurt    Ensemble kurtosis
           o(t,x) = kurt\{i1(t,x), i2(t,x), ..., in(t,x)\}
ensmedian  Ensemble median
           o(t,x) = median\{i1(t,x), i2(t,x), ..., in(t,x)\}
enspctl    Ensemble percentiles
           o(t,x) = pth percentile \{i1(t,x), i2(t,x), ..., in(t,x)\}

Note

Operators of this module need to open all input files simultaneously. The maximum number of open files depends on the operating system!