Multiday by the minute statistics
dminutestat.Rd
This module computes statistical values of each minute of day. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of each minute of day in infile is written to outfile. The date information in an output field is the date of the last contributing input field.
Usage
cdo_dminuteavg(ifile, ofile = NULL)
cdo_dminutemax(ifile, ofile = NULL)
cdo_dminutemean(ifile, ofile = NULL)
cdo_dminutemin(ifile, ofile = NULL)
cdo_dminuterange(ifile, ofile = NULL)
cdo_dminutestd(ifile, ofile = NULL)
cdo_dminutestd1(ifile, ofile = NULL)
cdo_dminutesum(ifile, ofile = NULL)
cdo_dminutevar(ifile, ofile = NULL)
cdo_dminutevar1(ifile, ofile = NULL)
Details
dminutemin Multi-day by the minute minimum
o(01,x) = min\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = min\{i(t,x), day(i(t)) = 1440\}
dminutemax Multi-day by the minute maximum
o(01,x) = max\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = max\{i(t,x), day(i(t)) = 1440\}
dminuterange Multi-day by the minute range
o(01,x) = range\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = range\{i(t,x), day(i(t)) = 1440\}
dminutesum Multi-day by the minute sum
o(01,x) = sum\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = sum\{i(t,x), day(i(t)) = 1440\}
dminutemean Multi-day by the minute mean
o(01,x) = mean\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = mean\{i(t,x), day(i(t)) = 1440\}
dminuteavg Multi-day by the minute average
o(01,x) = avg\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = avg\{i(t,x), day(i(t)) = 1440\}
dminutestd Multi-day by the minute standard deviation
Normalize by n.
o(01,x) = std\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = std\{i(t,x), day(i(t)) = 1440\}
dminutestd1 Multi-day by the minute standard deviation (n-1)
Normalize by (n-1).
o(01,x) = std1\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = std1\{i(t,x), day(i(t)) = 1440\}
dminutevar Multi-day by the minute variance
Normalize by n.
o(01,x) = var\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = var\{i(t,x), day(i(t)) = 1440\}
dminutevar1 Multi-day by the minute variance (n-1)
Normalize by (n-1).
o(01,x) = var1\{i(t,x), day(i(t)) = 01\}
...
o(1440,x) = var1\{i(t,x), day(i(t)) = 1440\}